Counting the number of non-equivalent vertex colorings of a graph

نویسندگان

  • Alain Hertz
  • Hadrien Mélot
چکیده

We study the number P(G) of non-equivalent ways of coloring a given graph G. We show some similarities and differences between this graph invariant and the well known chromatic polynomial. Relations with Stirling numbers of the second kind and with Bell numbers are also given. We then determine the value of this invariant for some classes of graphs. We finally study upper and lower bounds on P(G) for graphs with fixed maximum degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sharp lower bound on the number of non-equivalent colorings of graphs of order n and maximum degree n− 3

Two vertex colorings of a graph G are equivalent if they induce the same partition of the vertex set into color classes. The graphical Bell number B(G) is the number of non-equivalent vertex colorings of G. We determine a sharp lower bound on B(G) for graphs G of order n and maximum degree n− 3, and we characterize the graphs for which the bound is attained.

متن کامل

A sharp lower bound on the number of non-equivalent colorings of graphs of order and maximum degree

Two vertex colorings of a graph G are equivalent if they induce the same partition of the vertex set into color classes. The graphical Bell number B(G) is the number of non-equivalent vertex colorings of G. We determine a sharp lower bound on B(G) for graphs G of order n and maximum degree n− 3, and we characterize the graphs for which the bound is attained.

متن کامل

Counting Colorings of a Regular Graph

At most how many (proper) q-colorings does a regular graph admit? Galvin and Tetali conjectured that among all n-vertex, d-regular graphs with 2d|n, none admits more q-colorings than the disjoint union of n/2d copies of the complete bipartite graph Kd,d. In this note we give asymptotic evidence for this conjecture, showing that the number of proper q-colorings admitted by an n-vertex, d-regular...

متن کامل

On Approximately Counting Colorings of Small Degree Graphs

We consider approximate counting of colorings of an n-vertex graph using rapidly mixing Markov chains. It has been shown by Jerrum and by Salas and Sokal that a simple random walk on graph colorings would mix rapidly, provided the number of colors k exceeded the maximum degree ∆ of the graph by a factor of at least 2. We prove that this is not a necessary condition for rapid mixing by consideri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 203  شماره 

صفحات  -

تاریخ انتشار 2016